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On the Minimax Risk of Dictionary Learning

Alexander Jung, Yonina C. Eldar, Fellow, IEEE, and Norbert Gortz, Senior Member, IEEE

Abstract— We consider the problem of learning a dictionary
matrix from a number of observed signals, which are assumed
to be generated via a linear model with a common underlying
dictionary. In particular, we derive lower bounds on the minimum
achievable worst case mean squared error (MSE), regardless
of computational complexity of the dictionary learning (DL)
schemes. By casting DL as a classical (or frequentist) estimation
problem, the lower bounds on the worst case MSE are derived fol-
lowing an established information-theoretic approach to minimax
estimation. The main contribution of this paper is the adaption of
these information-theoretic tools to the DL problem in order to
derive lower bounds on the worst case MSE of any DL algorithm.
We derive three different lower bounds applying to different
generative models for the observed signals. The first bound only
requires the existence of a covariance matrix of the (unknown)
underlying coefficient vector. By specializing this bound to the
case of sparse coefficient distributions and assuming the true
dictionary satisfies the restricted isometry property, we obtain a
lower bound on the worst case MSE of DL methods in terms of
the signal-to-noise ratio (SNR). The third bound applies to a more
restrictive subclass of coefficient distributions by requiring the
non-zero coefficients to be Gaussian. Although the applicability of
this bound is the most limited, it is the tightest of the three bounds
in the low SNR regime. A particular use of our lower bounds is
the derivation of necessary conditions on the required number of
observations (sample size), such that DL is feasible, i.e., accurate
DL schemes might exist. By comparing these necessary conditions
with sufficient conditions on the sample size such that a particular
DL technique is successful, we are able to characterize the
regimes, where those algorithms are optimal in terms of required
sample size.

Index Terms— Compressed
minimax risk, Fano inequality.

sensing, dictionary learning,

I. INTRODUCTION

CCORDING to [1], the worldwide internet traffic in 2016
will exceed the Zettabyte threshold.! In view of the
pervasive massive datasets generated at an ever increasing
speed [2], [3], it is mandatory to be able to extract relevant
information out of the observed data. A recent approach to
this challenge, which has proven extremely useful for a wide
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10ne Zettabyte equals 102! bytes.

range of applications, is sparsity and the related theory of
compressed sensing (CS) [4]-[7]. In our context, sparsity
means that the observed signals can be represented by a linear
combination of a small number of prototype functions or
atoms. In many applications the set of atoms is pre-specified
and stored in a dictionary matrix. However, in some settings
it might be necessary or beneficial to adaptively determine
a dictionary based on the observations [8]-[10]. The task
of adaptively determining the underlying dictionary matrix
is referred to as dictionary learning (DL). DL has been
considered for a wide range of applications, such as image
processing [11]-[15], blind source separation [16], sparse
principal component analysis [17], and more.

We consider observing N signals y; € R generated via a
fixed (but unknown) underlying dictionary D € R”*” which
we would like to estimate. More precisely, the observations yi
are modeled as noisy linear combinations

Yi = Dx¢ +ng, (1)

where ni is assumed to be zero-mean with i.i.d. components
of variance ¢2. To formalize the estimation problem underly-
ing DL, we assume the coefficient vectors X; to be zero-mean
random vectors with finite covariance matrix X,. Our first
main result, i.e., Theorem 1 applies to a very wide class of
coefficient distributions since it only requires a finite covari-
ance matrix Xy. In particular, it holds for non-sparse random
coefficient vectors. However, the main focus of the paper
(Corollary 2 and Theorem 3) will be on distributions for which
the coefficient vector xj is strictly s-sparse with probability
one. In this work, we analyze the difficulty inherent to the
problem of estimating the true dictionary D € R™*”, which
is deterministic but unknown, from the measurements yy,
generated according to the linear model (1).

If we stack the observations yg, for k = 1,..., N, column-
wise into the data matrix Y € R™*N  one can cast DL as a
matrix factorization problem [18]. Given the data matrix Y,
we aim to find a dictionary matrix D € R™*? such that

Y =DX+N (2)

where the column sparse matrix X € R”*V contains in its kth
column the sparse expansion coefficients x; of the signal yy.
The noise matrix N = (nj,...,ny) € R™*V accounts for
small modelling and measurement errors.

A plethora of DL methods have been proposed and analyzed
in the literature (e.g., [8], [19]-[27]). In a Bayesian setting,
i.e., modeling the dictionary as random with a known prior
distribution, the authors of [24], [25], and [28] devise a
variant of the approximate message passing scheme [29] to
the DL problem. The authors of [20]-[23] and [30] model
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the dictionary as non-random and estimate the dictionary by
solving the (non-convex) optimization problem

min Y — DX|[% + 2IX]|1, 3)

DeD,XeRP*N
where ||X||; £ > 11 Xkl and D € R™*? denotes a constraint
set, e.g., requiring’ the columns of the learned dictionary to
have unit norm. The term A||X]||; (with sufficiently large 1)
in the objective (3) enforces the columns of the coefficient
matrix X to be (approximately) sparse.

Assuming the true dictionary D € R™*? deterministic but
unknown (with known size p) and the observations y; i.i.d.
according to the model (1), the works in [20]-[22] provide
upper bounds on the distance between the generating dictio-
nary D and the closest local minimum of (3). For the square
(i.e., p = m) and noiseless (N = 0) setting, [22] showed that
N = O(plog(p)) observations suffice to guarantee that the
dictionary is a local minimum of (3). Using the same setting
(square dictionary and noiseless measurements), [26] proved
the scaling N = O(plog(p)), for arbitrary sparsity levels, to
be sufficient such that the dictionary matrix can be recovered
perfectly from the measurements y;.2 Our analysis, in contrast,
takes measurement noise into account and yields lower bounds
on the required sample size in terms of SNR. While the results
on the square-dictionary and noiseless case are theoretically
important, their practical relevance is limited. Considering the
practically more common case of an overcomplete (p > m)
dictionary D and noisy measurements (N # 0), the authors
of [21] show that a sample size of N = O(p>m) i.i.d. mea-
surements yi suffices for the existence of a local minimum of
the cost function in (3) which is close to the true dictionary D.

In contrast to approaches based on solving (3), a recent
line of work [8], [26], [27] presents DL methods based on
(graph-)clustering techniques. In particular, the set of observed
samples yi is clustered such that the elements within each
cluster share a single generating column d; of the underlying
dictionary. The authors of [27] show that a sample size

= O(p?*log p) suffices for their clustering-based method
to accurately recover the true underlying dictionary. However,
this result applies only for sufficiently incoherent dictionar-
ies D and for the case of vanishing sparsity rate, i.e., s/p — 0.
The scaling of the required sample size with the square of
the number p of dictionary columns (neglecting logarithmic
terms) is also predicted by our bounds. What sets our work
apart from [27] is that we state our results in a non-asymptotic
setting, i.e., our bounds can be evaluated for any given
number p of dictionary atoms, dimension m of observed
signals and nominal sparsity level s of the coefficient vector
X in (1).

Although numerous DL schemes have been proposed and
analyzed, existing results typically yield sufficient conditions
(e.g., on the sample size N) such that DL is feasible.
In contrast, necessary conditions which apply to any DL algo-
rithm (irrespective of computational complexity) are far more
limited. We are only aware of a single fundamental result that
applies to a Bernoulli-Gauss prior for the coefficient vectors xi

2With high probability and up to scaling and permutations of the dictionary
columns.
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in (1): This result, also known as the “coupon collector phe-
nomenon” [26], states that in order to have every column d; of
the dictionary contributing in at least one observed signal yj
(i.e., the corresponding entry xi ; of the coefficient vector
in (1) is non-zero) the sample size has to scale linearly with
(1/6)log p where 6 denotes the probability P{x; ; # 0}. For
the choice § = s/p, which yields s-sparse coefficient vectors
with high probability, this requirement effectively becomes
N > c1(p/s)log p, with some absolute constant cy.

In this paper we contribute to the understanding of neces-
sary conditions or fundamental recovery thresholds for DL,
by deriving lower bounds on the minimax risk for the
DL problem. We define the risk incurred by a DL scheme
as the mean squared error (MSE) using the Frobenius norm
of the deviation from the true underlying dictionary. Since
the minimax risk is defined as the minimum achievable worst
case MSE, our lower bounds apply to the worst case MSE of
any algorithm, regardless of its computational complexity. This
paper seems to contain the first analysis that targets directly the
fundamental limits on the achievable MSE of any DL method.

For the derivation of the lower bounds, we apply an estab-
lished information-theoretic approach (cf. Section II) to mini-
max estimation, which is based on reducing a specific multiple
hypothesis problem to minimax estimation of the dictionary
matrix. Although this information-theoretic framework has
been successfully applied to several other (sparse) minimax
estimation problems [31]-[35], the adaptation of this method
to DL seems to be new. The lower bounds on the minimax
risk give insight into the dependencies of the achievable worst
case MSE on the model parameters, i.e., the sparsity s, the
dictionary size p, the dimension m of the observed signal
and the SNR. Our lower bounds on the minimax risk have
direct implications on the required sample size of accurate
DL schemes. In particular our analysis reveals that, for a
sufficiently incoherent underlying dictionary, the minimax risk
of DL is lower bounded by ¢ p?/(SNRN), where ¢| is some
absolute constant. Thus, for a vanishing minimax risk it is
necessary for the sample size N to scale linearly with the
square of the number p of dictionary columns and inversely
with the SNR. Finally, by comparing our lower bounds
(on minimax risk and sample size) with the performance
guarantees of existing learning algorithms, we can test if these
methods perform close to optimal.

Some recent work on the sample complexity of
DL [36], [37] presents upper bounds on the sample
size such that the (expected) performance of an ideal learning
method is close to its empirical performance observed when
applied to the samples. While the authors of [36] measure
the quality of the estimate D via the residual error obtained
when sparsely approximating the observed vectors y,
we use a different risk measure based on the squared
Frobenius norm of the deviation from the true underlying
dictionary. Clearly, these two risk measures are related.
Indeed, if the Frobenius norm |D — D||r is small, we can
also expect that any sparse linear combination Dx using
the dictionary D can also be well represented by a sparse
linear combination Dx’ using D. Our results are somewhat
complementary to the upper bounds in [36] in that they yield
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lower bounds on the required sample size such that there may
exist accurate learning schemes (regardless of computational
complexity).

The remainder of this paper is organized as follows:
We introduce the minimax risk of DL and the information-
theoretic method for lower bounding it in Section II. Lower
bounds on the minimax risk for DL are presented in
Section III. We also put our bounds into perspective by
comparing their implications to the available performance
guarantees of some DL schemes. Detailed proofs of the main
results are contained in Section IV.

Throughout the paper, we use the following notation: Given
a natural number k € N, we define the set [k] = {1,...,k}.
For a matrix A € R™*P, we denote its Frobenius norm and its
spectral norm by [|A|lr £ /Tr{AAT} and ||A||2, respectively.
The open (Frobenius-norm) ball of radius » > 0 and center
D € R™*? is denoted B(D,r) £ (D' € R™*7:|D —D'|p <r}.
For a square matrix A, the vector containing the elements
along the diagonal of A is denoted diag{A}. Analogously,
given a vector a, we denote by diag{a} the diagonal matrix
whose diagonal is obtained from a. The kth column of the
identity matrix is denoted e;. For a matrix X € RP*N, we
denote by supp(X) the N-tuple (supp(xi),...,supp(xy)) of
subsets given by concatenating the supports supp(xy) of the
columns x; of the matrix X. The complementary Kronecker
delta is denoted (_51,1/, ie., 51,1/ = 0 if [ = I’ and equal to
one otherwise. We denote by 0 the vector or matrix with
all entries equal to 0. The determinant of a square matrix
C is denoted |C|. The identity matrix is written as I or I
when the dimension d x d is not clear from the context.
Given a positive semidefinite (psd) matrix C, we write its
smallest eigenvalue as Amin(C). The natural and binary log-
arithm of a number b are log(b) and log,(d), respectively.
For two sequences g(N) and f(N), indexed by the natural
number N, we write g = O(f) and g = O () if, respectively,
g(N) < C'f(N) and g(N) > C” f(N) for some constants
C',C" > 0.1If g(N)/f(N) — 0, then we write g = o(f).
We denote by Ex f(X) the expectation of the function f(X)
of the random vector (or matrix) X.

II. PROBLEM FORMULATION
A. Basic Setup

For our analysis we assume the observations yj are
i.i.d. realizations according to the random linear model

y = Dx +n. 4)

Thus, the vectors yi, Xx and ng, for k = 1,..., N, in (1) are
i.i.d. realizations of the random vectors y, X and n in (4). Here,
the matrix D € R™*?, with p > m, represents the determin-
istic but unknown underlying dictionary, whose columns are
the building blocks of the observed signals yx. The vector x
represents zero mean random expansion coefficients, whose
distribution is assumed to be known. Our analysis applies
to a wide class of distributions. In fact, we only require the
existence of the covariance matrix

DI EX{XXT}. (5)
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The effect of modeling and measurement errors are cap-
tured by the noise vector n, which is assumed independent
of x and is white Gaussian noise (AWGN) with zero mean
and known variance 2. When combined with a sparsity
enhancing prior on X, the linear model (4) reduces to the
sparse linear model (SLM) [38], which is the workhorse of
CS [6], [39], [40]. However, while the works on the SLM
typically assume the dictionary D in (4) perfectly known, we
consider the situation where D is unknown.

In what follows, we assume the columns of the dictionary D
to be normalized, i.e.,

DeD2 (BeR"™P|e/B'Be, =1, forall k € [p]}. (6)

The set D is known as the oblique manifold [21], [41], [42].
For fixed problem dimensions p, m and s, requiring (6)
effectively amounts to identifying SNR with the quantity
|Zxll2/c2. Our analysis is local in the sense that we con-
sider the true dictionary D to belong to a small neighbor-
hood, i.e.,

D € X(Do,r) 2 B(Dy,r) N D
={D'eD:|D —DolF <r} @)

with a fixed and known “reference dictionary” Dyp € D
and known radius’ r < 2./p. This local analysis avoids
ambiguity issues that are intrinsic to DL (cf. [26]). How-
ever, the lower bounds on the minimax risk derived under
the locality constraint (7) trivially also apply to the global
DL problem, i.e., where we only require (6).

B. The Minimax Risk

We will investigate fundamental limits on the accuracy
achievable by any DL scheme, irrespective of its computa-
tional complexity. By a DL scheme, we mean an estimator ﬁ(o)
which maps the observation Y = (yl, e, yN) to an estimate
ﬁ(Y) of the true underlying dictionary D. The accuracy of
a given learning method will be measured via the MSE
Ey{||ﬁ(Y) —AD||%}, which is the expected squared distance of
the estimate D(Y) from the true dictionary, measured in Frobe-
nius norm. Note that the MSE of a given learning algorithm
ﬁ(Y) depends on the true underlying dictionary D, which is
fixed but unknown. Therefore, the MSE cannot be minimized
uniformly for all D [43]. However, for a given estimator ﬁ(~),
a reasonable performance measure is the worst case MSE
SUPDe X (Do, r) Ey{||ﬁ(Y) — D||12:} [44]. The optimum estimator
under this criterion has smallest worst case MSE among all
possible estimators. This smallest worst case MSE (referred
to as minimax risk) is an intrinsic property of the estimation
problem and does not depend on a specific estimator.

In general, the minimax risk &* depends on the sample
size N, the dimension m of the observed signals, the number
p of dictionary elements, the sparsity degree s and the noise
variance ¢ 2. Moreover, the minimax risk also depends on the
distribution of the coefficient vector x in (4). However, in what
follows we assume this distribution to be fixed and known.

3Considering only values not exceeding 2,/p for the radius r in (7) is

reasonable since for any radius r > 2,/p we would obtain X'(Dg,r) = D
yielding the global DL problem.
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For the sake of light notation, we will not make these depen-
dencies explicit. Concretely, the minimax risk ¢* is defined as

¢*2inf sup Ey{|D(Y) - D|}}. ®)
D DeX(Dy,r)
We highlight that the minimax risk is defined here for a fixed
and known distribution of the coefficient vector x; in (1).
In what follows, we derive three different lower bounds on
the minimax risk by considering different types of coefficient
distributions.

Note that while, at first sight, the locality assumption (7)
may suggest that our analysis yields weaker results than the
general setting, the opposite is actually true. Indeed, our
lower bounds on the minimax risk predict that even under
the additional a-priori knowledge that the true dictionary
belongs to the (small) neighborhood of a known reference
dictionary Dy, the minimax risk is lower bounded by a strictly
positive number which, for a sufficiently large sample size,
does not depend on the size of the neighborhood at all.
Also, from the definition (8) it is obvious that any lower
bound on the minimax risk ¢* under the locality constraint (7)
is simultaneously a lower bound on the minimax risk for
global DL, which is obtained from (8) by replacing the
constraint D € X' (Dg, r) in the inner maximization with the
constraint D € D.

The minimax problem (8) typically cannot be solved
in closed-form. Instead of trying to exactly solve (8) and
determine ¢*, we will derive lower bounds on &* by
adapting an established information-theoretic methodology
(cf., e.g., [31], [33], [45]) to the DL problem. Having a lower
bound on the minimax risk ¢* allows to asses the performance
of a given DL scheme. In particular, if the worst case MSE of a
given method is close to the lower bound, then there is no point
in searching for alternative algorithms with substantially better
performance (in terms of worst case MSE). We emphasize
that our bounds apply to any DL scheme, regardless of its
computational complexity. In particular, these bounds apply
to DL methods which do not exploit knowledge of the sparse
coefficient distribution nor of the noise variance.

C. Information-Theoretic Lower Bounds on the Minimax Risk

A principled approach [31], [33], [45] to lower bounding
the minimax risk &¢* is based on reducing a specific multiple
hypothesis testing problem to minimax estimation of the
dictionary D. More precisely, if there exists an estimator with
small worst case MSE, then this estimator can be used to
solve a hypothesis testing problem. However, using Fano’s
inequality, there is a fundamental limit on the error probability
for the hypothesis testing problem. This limit induces a lower
bound on the worst case MSE of any estimator, i.e., on the
minimax risk. Let us now outline the details of this approach.

First, within this approach one assumes that the true dictio-
nary D in (4) is taken uniformly at random (u.a.r.) from a finite
subset Dy = {D;}ie(] € X (Do, r) for some L € N (cf. Fig. 1).
This subset Dy is constructed such that (i) any two distinct
dictionaries D;, Dy € Dy are separated by at least /8¢,
ie., |D; — Dyllr > /8¢ and (ii) it is hard to detect the

true dictionary D, drawn u.a.r. out of Dy, based on observing

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 3, MARCH 2016

Fig. 1.
D; € D, which is used for deriving a lower bound &* > & on the minimax
risk ¢* (cf. (8)). For the true dictionary D = Dy, we also depict a typical
realization of an estimator D achieving the minimax risk.

A finite ensemble Dy = {Dy};¢[L], containing L = 4 dictionaries

Y = (y1,...,yn). The existence of such a set Dy yields a
relation between the sample size N and the remaining model
parameters, i.e., m, p, s, ¢ which has to be satisfied such that
at least one estimator with minimax-risk not exceeding ¢ may
exist.

In order to find a lower bound ¢* > ¢ on the minimax
risk &* (cf. (8)), we hypothesize the existence of an estimator
ﬁ(Y) achieving the minimax risk in (8). Then, the minimum
distance detector

argmin [D(Y) — D'||r ©)
D’EDO
recovers the correct dictionary D € Dy if ﬁ(Y) belongs to the
open ball B(D, +/2¢) (indicated by the dashed circles in Fig. 1)

centered at D and with radius /2¢. The information-theoretic
method [31], [32], [45] of lower bounding the minimax risk &*
consists then in relating, via Fano’s inequality [46, Ch. 2],
the error probability P{ﬁ(Y) ¢ B(D, \/2_8)} to the mutual
information (MI) between the observation Y = (yi,...,yn)
and the dictionary D in (4), which is assumed to be drawn
u.a.r. out of Dy.

Thus, within this approach, the DL estimation problem
is interpreted as a communication problem, as illustrated in
Fig. 2. The source selects the true dictionary D = D; by
drawing u.a.r. an element D; from the set Dy. This element
D; then generates the “channel output” Y = (yi,...,yy) via
the model (4) for N channel uses. The observation model (4)
acts as a channel model, relating the input D = D; to the
output Y. A crucial step in the information-theoretic method
is the analysis of the MI defined by [46]

1(Y; 1) éEY,z[logM],

p(Y)p()
where p(Y,!), p(Y) and p(l) denote the joint and marginal
distributions, respectively, of the channel output Y and the
random index /. A key challenge in applying this method to
DL is that the model (4) does not correspond to a simple



JUNG et al.: ON THE MINIMAX RISK OF DL

1505

Source Channel Decoder
u.a.r =Dx;4n ~ [
Yk X1y . l
— D=D min |[D(Y)—Dy||F j=p
! Y=(y1,-¥nN) lelL] IDEY) |

Fig. 2. Information-theoretic method for lower bounding the minimax risk.

AWGN channel, for which the MI between output and input
can be characterized easily. Indeed, the model (4) corresponds
to a fading channel with the vector x representing fading
coefficients. As is known from the analysis of non-coherent
channel capacity, characterizing the MI between output and
input for fading channels is much more involved than for
AWGN channels [47]. In particular, we require a tight upper
bound on the MI 7(Y; /) between the output Y and a random
index [ which selects the input D = D; u.a.r. from a finite set
Dy € X(Dy, r). Upper bounding I (Y; ) typically involves the
analysis of the Kullback-Leibler (KL) divergence between the
distributions of Y induced by different dictionaries D = Dy,
[ e[L]

Unfortunately, an exact characterization of the KL diver-
gence between Gaussian mixture models is in general not pos-
sible and one has to resort to approximations or bounds [48].
A main conceptual contribution of this work is a strategy to
avoid evaluating KL divergences between Gaussian mixture
models. Instead, similar to the approach of [32], we assume
that, in addition to the observation Y, we also have access
to some side information T(X), which depends only on the
coefficient vector x, for k € [N], stored column-wise in
the matrix X = (xi,...,Xy). Clearly, any lower bound on
the minimax risk for the situation with the additional side
information T(X) is trivially also a lower bound for the case
of no side information, since the optimal learning scheme for
the latter situation may simply ignore the side information.
As we show rigorously in Appendix, we have the upper bound
I1(Y;1]) < I1(Y;1|T(X)), where I(Y; [|T(X)) is the conditional
mutual information, given the side information T (X), between
the observed data matrix Y and the random index [. Thus,
in order to control the MI 7(Y;[) it is sufficient to control
the conditional MI 1(Y;/|T(X)), which turns out to be a
much easier task. We will use two specific choices for T(X):
T(X) = X and T(X) = supp(X). The choice T(X) = X
yields tighter bounds for the case of high SNR, while using
T(X) = supp(X) results in more accurate bounds in the low
SNR regime. In Section IV we show that the problem of upper
bounding 7(Y; /|T(X)) is tractable for both choices.

III. LOWER BOUNDS ON THE MINIMAX RISK

We now state our main results, i.e., lower bounds on the
minimax risk of DL. The first bound applies to any distribution
of the coefficient vector x, requiring only the existence of
the covariance matrix X,. Two further, more specialized,
lower bounds assume sparse coefficient vectors and require the
underlying dictionary D in (1) to satisfy a restricted isometry
property (RIP) [49].

A. General Coefficients

In this section, we consider the DL problem based on
the model (4) with a zero-mean random coefficient vec-
tor x. We make no further assumptions on the statistics
of x except that the covariance matrix X, exists. For this
setup, the side information T(X) (cf. our discussion at the
end of Section II-C) for the derivation of lower bounds
on the minimax risk will be chosen as the coefficients,
i.e., T(X) = X. Our first main result is the following lower
bound on the minimax risk for the DL problem.

Theorem 1: Consider a DL problem based on N i.id.
observations following the model (4) and with true dictionary

satisfying (7) for some r < 2./p. If

p(m —1) > 50, (10)
then the minimax risk * is lower bounded as
1 —1)/10 — 1)o2
&* > — min Irz, (pGm — 1)/ )o ] (11)
N Zxll2

The first bound in (11), i.e., &* > r2/320,* complies (up to
fixed constants) with the worst case MSE of a dumb estimator
D which ignores the observation Y and always delivers a
fixed dictionary D; € X (Dy, r). Since the true dictionary D
also belongs to the neighborhood X (Dy, r), the MSE of this
estimator is upper bounded by

ID —D|2 = [D; — D|I3
2,
< (IDy = Dol + Do — DIr)” < 4r2.

The second bound in (11) (ignoring constants) is essentially
the minimax risk &’ of a simple signal in noise problem

Zz=S+n (12)

with AWGN noise, n ~ N (0, ﬁlp(m,l)) and an unknown
non-random signal s of dimension p(m — 1), which is also the
dimension of the oblique manifold D [42]. A standard result in
classical estimation theory is that, given the observation of N

i.1.d. realizations z; of the vector z in (12), the minimax risk

sup E{[8(z1, ..., 2zy) —sl3}

/A .
¢ = inf
() geRpm—1)

S

of estimating s € RP("~1) is [44, pp. 403, Exercise 5.8]

2
1

P — (13)
N Zxll2

pim —1).

4The constant 1/320 is an artifact of our proof technique and might be
improved by a more pedantic analysis.
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For fixed ratio ||Z.|2/o2, the bound (11) predicts that
N = O(pm) samples are required for accurate DL.
Remarkably, this scaling matches the scaling of the sample size
found in [36] to be sufficient for successful DL. Note, however,
that the analysis [36] is based on the sparse representation error
of a dictionary, whereas we target the Frobenius norm of the
deviation from the true underlying dictionary.

B. Sparse Coefficients

In this section we focus on a particular subclass of prob-
ability distributions for the zero mean coefficient vector x
in (4). More specifically, the random support supp(x) of the
coefficient vector x is assumed to be distributed uniformly over
the set 2 £ {S C [p]: |S| = s}, ie.,

1 1
)
= (s)
We also assume that, conditioned on the support S = supp(x),
the non-zero entries of x are i.i.d. with variance o2, i.e.,

P(supp(x) = S) = , forany S € Z. (14)

Ex{xsx5|S} = 0 1. (15)

The sparse coefficient support model (14) is useful for
performing sparse coding of the observed samples yi. Indeed,
once we have learned the dictionary D, we can estimate
for each observed sample yi, using a standard CS recov-
ery method, the sparse coefficient vector x;. Sparse source
coding is then accomplished by using the sparse coefficient
vector to represent the signal y;. For sparse source coding
to be robust against noise, one has to require the underly-
ing dictionary D to be well conditioned for sparse signals.
While there are various ways of quantifying the condition-
ing of a dictionary, e.g., based on the dictionary coher-
ence [22], [27], we will focus here on the restricted isometry
property (RIP) [33], [49], [50]. A dictionary D is said to satisfy
the RIP of order s with constant J; if

(1 —dplizl* < [Dz|*> < (14 d)lzl|*,

for any z € R? such that ||z]lo <s. (16)

While it is intractable to determine if a given matrix D satisfies
the RIP, it turns out that there are random constructions,
i.e., the matrix D is obtained by drawing it from a certain
probability distribution, which yield matrices having the RIP
with high probability [49]. Moreover, the RIP is stable in the
sense that if a matrix D satisfies the RIP, then so will the
perturbed matrix D + A for a sufficiently small perturbation
IA|lr (we make use of this fact when proving Theorem 4
below).

Let us formally define the signal-to-noise ratio (SNR) for
the observation model (4) as

SNR 2 Ey{||Dx|2}/En{[In|2}. (17)

Note that the SNR depends on the unknown underlying dictio-
nary D. However, if D satisfies the RIP (16) with constant Jy,
then

a1- 5s)saa2 < SNR < a1+ 5S)s0a2

2 - - mao?

(18)

mo
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These bounds depend on D only via the RIP constant ds.
For a small constant J;, (18) justifies the approximation
SO'2
SNR =~ .
As can be verified easily, any random coefficient vector x
conforming with (14) and (15) possesses a finite covariance
matrix, given explicitly by

T = (s/p)oll,.

Therefore we can invoke Theorem 1, which, combined
with (18) and (19), yields the following corollary.

Corollary 2: Consider a DL problem based on N i.id.
observations according to the model (4) and with true dic-
tionary satisfying (7) for some r < 2./p. Furthermore, the
random coefficient vector X in (4) conforms with (14) and (15).
If the dictionary D satisfies the RIP (16) with RIP-constant
0s < 1/2 and moreover

19)

p(m —1) > 50, (20)
then the minimax risk &* is lower bounded as
2 —1)/10—1
¢ > min |2, 2P =D/ ' e
320 SNRNm

For sufficiently large sample size N the second bound
in (21) will be in force, leading to a scaling of the minimax
risk as & = O(p?/(NSNR)). In particular, this bound
suggests a decay of the worst case MSE via 1/N. This agrees
with empirical results in [21], indicating that the MSE of
popular DL methods typically decay with 1/N. Moreover,
the dependence on the sample size via 1/N is theoretically
sound, since averaging the outcomes of a learning scheme over
N independent observations reduces the estimator variance
by 1/N. Note that, as long as the first bound in (21) is not in
force, the overall lower bound (21) scales with 1/SNR, which
agrees with the basic behavior of the upper bound derived
in [21] on the distance of the closest local minimum of (3) to
the true dictionary D.

If we consider a fixed SNR (cf. (17)), then our lower
bound predicts that for a vanishing minimax risk &* the
sample size N has to scale as N = ©(p?). This scaling
is considerably smaller than the sample size requirement
N = O(p3m), which [21] proved to be sufficient in the noisy
and over-complete setting, such that minimizing (3) yields
an accurate estimate of the true dictionary D. However, for
vanishing sparsity rate (s/p — 0), the scaling N = O(p?)
matches the required sample size of the algorithms put forward
in [8] and [27], certifying that, for extremely sparse signals,
they perform close to the information-theoretic optimum for
fixed SNR.

We next derive an alternative lower bound on the minimax
risk for DL based on the sparse coefficient model (14) and (15)
by additionally assuming the non-zero coefficients to be
Gaussian. In particular, let us denote by P a random matrix
which is drawn uv.a.r. from the set of all permutation matrices
of size p x p. Furthermore, we denote by z € R*® a multivariate
normal random vector with zero mean and covariance matrix
X, = aazIs. Based on the matrix P and vector z, we generate
the coefficient vector x as

x =Pz, 014(p_)" with z~N(©,021).  (22)
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Theorem 3 below presents a lower bound on the min-
imax risk for the low SNR regime where SNR <
(1/(9v/80))m/(2s).

Theorem 3: Consider a DL problem based on the model (4)
such that (7) holds with some r < 2./p and the
underlying dictionary D satisfies the RIP of order s with
constant o < 1/2 (cf. (16)). We assume the coeffi-
cients X in (4) to be distributed according to (22) with

SNR < (1/(9+/80))m/(2s). If

p(m —1) = 50, (23)
then the minimax risk * is lower bounded as
. —1)/10—1)p
= 12960 mmir /5 T SNRE N (24)

The main difference between the bounds (21) and (24) is
their dependence on the SNR (cf. (17)). While the bound (21),
which applies to arbitrary coefficient statistics and does not
exploit the sparse structure of the model (22), depends on
the SNR via 1/SNR, the bound (24) shows a dependence via
1 /SNR2. Thus, in the low SNR regime where SNR « 1, the
bound (24) tends to be tighter, i.e. higher, than (21).

We now show that the dependence of the bound (24)
on the SNR via 1/SNR? agrees with the basic behavior of
the constrained Cramér—Rao bound (CCRB) [51]. Indeed, if
we assume for simplicity that p = s = 1 and the true
dictionary (which is now a vector) is d = ey, then the CCRB
gives [51, Th. 1]

Ey{(d(Y) — d)[@d(Y) —d)T} = I—eel) (25)

SNR?m2N
for any unbiased estimate a(Y), for which Ey{a(Y)} =d>
Thus, in this simplified setting, the dependence of the minimax
bound (24) on the SNR is also reflected by the CCRB.

We emphasize that the bound in Theorem 3 is derived by
exploiting the (conditional) Gaussianity of the non-zero entries
in the coefficient vector. By contrast, the bounds in Theorem 1
and Corollary 2 do not require the non-zero entries to be
Gaussian.

C. A Partial Converse

Given the lower bounds on the minimax risk presented in
Sections III-A and III-B it is natural to ask wether these are
sharp, i.e., there exist DL schemes whose worst case MSE
comes close to the lower bounds. To this end, we consider a
simple instance of the DL problem and analyze the MSE of
a very basic DL method. As it turns out, in certain regimes,
the worst case MSE of this simple DL approach essentially
matches the lower bound (21). The particular DL method that
we will analyze is described by Algorithm 1.

5Using the notation of [51], we obtained (25) from [51, Th. 1] by using
the matrix U = (e, ..., €;) which forms an orthonormal basis for the null

space of the gradient mapping F(d) = % with the constraint function
fd = ||d\|% — 1. Moreover, for evaluating [51, Th. 1] we used the formula
Teo = (1/2) Tr{C*l(d)%lc*(d)%l} [52] for the elements of the

Fisher information matrix, which applies to a Gaussian observation with zero
mean and covariance matrix C(d).
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Algorithm 1 A Very Simple DL Method.

Input: data matrix Y = (y1,...,¥N) € RM*N

Output: learned dictionary D(Y) € R™*?
1) Compute an estimate X of the coefficient matrix

X = (X1,...,XyN) by element-wise thresholding, i.e.,
X =(%i,...,%n),
I, ify;>05
with Xk = 10, if [ykgl < 0.5 (26)
—1, if yk1 <0.5.
2) For each column-index j € [p], define
d; 2 % kez[]:v] Vi 27)
3) Output
D(Y) 2 (di,...,dp), withd;=Qd;.  (28)

Here, Qd 2 argmind,eg(l) ld’ — dl|l» denotes the

projection of the vector d € R™ onto the closed unit
ball B) £ {d e R™ : ||d'|» < 1}.

Note that the learned dictionary ﬁ(Y) obtained by
Algorithm 1 might not have unit-norm columns so that it might
not belong to the oblique manifold D. While this is somewhat
counter-intuitive, as the true dictionary D belongs to D, this
fact is not relevant for the derivation of upper bounds on the
MSE incurred by ﬁ(Y).

We have the following characterzation of the performance
of Algorithm 1.

Theorem 4: Consider a DL problem based on N i.i.d.
observations according to the model (4) with true dictionary
satisfying (7) with Dy = 1 and some r =< 2./p. Fur-
thermore, the random coefficient vector x in (4) conforms
with (14) and (15). Moreover, the non-zero entries of X have
magnitude equal to one, i.e., x € {—1,0, 1}P. If r\/s < 1/10
and o < 0.4, then the MSE of Algorithm 1 satisfies

Ey{IID(Y) — DI} < 4(p?/N)[(1 = r)?/SNR + 1]

+2pexp(—pN0.42/(26%)), (29)
for any D € X(Do, r).

Admittedly, the scope of Theorem 4 is limited. In par-
ticular, it applies only to the regime of extremely sparse
signals where s < 1/ (lOOrZ). However, the point of
Theorem 4 is that there exists a non trivial regime where
the lower bound (21) is essentially tight, i.e., gives an
accurate characterization of the minimax risk. The proof of
Theorem 4 is provided at the end of Section IV.

According to Theorem 4, in the low-SNR regime,
i.e., where SNR = o(1), and for sufficiently small noise
variance, such that ¢ < 0.4 and

pexp(—pN0.4%/(26%)) = o((p*/N)(1 — r)?/SNR),  (30)
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the MSE of the DL scheme given by Algorithm 1 scales as
p*a—ry
NSNR J°

We highlight that the scaling of the upper bound (31) essen-
tially matches the scaling of the lower bound (21), certifying
that the bound of Corollary 2 is tight in certain regimes.

Ey{IID(Y) - D|}} = 0( (1)

IV. PROOF OF THE MAIN RESULTS

Before stating the detailed proofs of Theorem 1 and
Theorem 3, we present the key ideas and the main ingredients
used for their proofs. At their core, the proofs of Theorem 1
and Theorem 3 are based on the construction of a finite set
Do £ {Dy,...,Dr} € D (cf. (6)) of L distinct dictionaries
having the following desiderata:

o For any two dictionaries D;, Dy € Do,

ID; — Dyl > 7,18 (32)

o If the true dictionary in (4) is chosen as D = D; € Dy,
where [ is selected u.a.r. from [L], then the conditional
MI between Y and [, given the side information T(X),°
is bounded as

I(Y;IIT(X)) <7 (33)

for some small 7.

To verify the existence of such a set Dy, we rely on the
following result:
Lemma 5: For P € N such that

log(P)/d < (1 —2/10)?/4, (34)

there exists a set P £ {bi}icrp) of P distinct binary vectors
b; € {—1, 1} satisfying

b —byllo > d/10, foranyl, I' € [P] withl #1'. (35)

Proof: We construct the set P sequentially by draw-
ing i.i.d. realizations b; from a standard Bernoulli vector
b € {—1, 1}4. Consider two different indices /, I’ € [ P]. Define
the vector b £ b; © by by element-wise multiplication and
observe that

by = byllo = (1/2) (p -> b) (36)
reld]

Each one of the three vectors bz,bp,i; e {—1, l}d contains
zero-mean i.i.d. Bernoulli variables. Therefore,

36 ~
P{Ib —byllo < d/10} 2 P((d — > by) < d/5)
reld]
= P{ D b > 4/5d}. (37)
reld]
According to Hoeffding’s inequality [49, Th. 7.20]

(see Lemma 9 in Appendix),

P{Y " by > (1 -2/10)d) < exp(—d(1 —2/10)*/2). (38)
reld]

Sparticular choices for T(X) are discussed at the end of Section II-C.
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Taking a union bound over all (g) pairs 1,1’ € [P], we
have from (37) and (38) that the probability of P i.i.d. draws
{bs}ic(p) violating (35) is upper bounded by

Py < exp(—d(1 —2/10)%/2 + 2log P), (39)

which is strictly lower than 1 if (34) is valid. Thus, there must
exist at least one set P = {b;};c[p] of cardinality P whose
elements satisfy (35). ]

The following result gives a sufficient condition on the
cardinality L and threshold # such that there exists at least
one subset D9y € D of L distinct dictionaries satisfy-
ing (32) and (33).

Lemma 6: Consider a DL problem based on the genera-
tive model (4) such that (7) holds with some r < 2./p.
If (m—1)p > 50, then there exists a set Do C D of cardinality
L > 2m=Dp/5 quch that (32) and (33) are satisfied (for the
side information T(X) = X) with

n=320N|Zyl2¢/0> (40)

and

e < r?/320. (41)

Proof: According to Lemma 5, for (m — 1)p > 50, there

is a set of L matrices Dy € (1/y/4(m — D)p){—1, 1}"=Dxp,
[ € [L] with L > 2m=DP/5 guch that

Dy, — D1,1/||12: > 1/40 for I # 1. (42)

Since the matrices Dy € Rm=Dxp for ] ¢ [L], have entries
with values in (1/4/4(m — 1)p){—1, 1} their columns all have
norm equal to 1/./4p.

Based on the matrices D ;€ RM=DXP e now construct a
modified set of matrices D, ; € R™*?, [ € [L]. Let U; denote

an arbitrary m x m unitary matrix satisfying
d(),j :Ujel. (43)

Here, do,; denotes the jth column of Doe R™*P. Then, we
define the matrix D,; column-wise, by constructing its jth

column dy ; as
0
) = U
sbs] J dl,l,j >

where dj,; is the jth column of the matrix Dy ;. Note that,
for any [ € [L], the jth column dy; ; of Dy is orthogonal to
the column do_; and has norm equal to 1/4/4p, i.e.,

(44)

diag{D{ Dy} = 0, and

1
diag{D] Dy} = 4—1 for any [ € [L]. (45)
’ p
Moreover, for two distinct indices [/, 1’ € [L], we have
(44) 42)
ID2; = Doyllf = D1y —Diylf = 1/40.  (46)
Consider the matrices Dy,
D; =/1—¢/(4p)Do + Ve'Dyy, (47)
where [ € [L] and
¢ £ 320e. (48)
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The construction (47) is feasible, since (41) guarantees
g <r?< 4p. We now verify that the matrices Dy, forl € [L],
belong to X' (Do, r) and moreover are such that (32) and (33)
are satisfied, with # given in (40).

D; belongs to X (Do, r): Consider the jth columns d; ;, do,;
and dz;,; of D;, Do and Dy, respectively. Then

2 (45).(47)
Idy.j 112

(1—¢/@p))lido; 113 + & llda ;113
(1-¢'/@p)) + (¢'/(4p)) = 1.

Thus, the columns of any Dy, for [ € [L], have unit norm.
Moreover,

© (49)

47
ID; — Dol = II(1 —

V1T —¢/@4p)Dy — VeDy Il

45)

= (1—1—¢'/@p)*IDolIE + &'IDoy I}
45)

= (1=/1—¢'/@p)2IDoli} + &' /4

&' /(4p)<1,DoeD
< (£'/4p)*p + ¢ /4
€ /(417)_

(1/2)¢'
41
<<> 2

Lower Bounding ||D;—Dy ||i-: The squared distance between

two different matrices D; and Dy is obtained as

(47)
ID; — Dy} =

46)
> &' /40.

¢'|D2; — Doyl
(50)

Thus, we have verified

(48)

ID; — Dyl > &'/40 = 8, &1y

for any two different /,1’ € [L].

Upper Bounding 1(Y;[|T(X)): We now upper bound the
conditional MI I(Y; [|T(X)), conditioned on the side infor-
mation T(X) = X, between the observation Y and the index [
of the true dictionary D = D; € Dy in (4). Here, the random
index [ is taken u.a.r. from the set [L]. First, note that the
dictionaries D; given by (47), satisfy

D —DpE E Dy — Doyl
< & (ID2llr + D2y lIF)?
= 4¢'|Doyl
L 350 (52)

According to our observation model (4), conditioned on
the coefficients xi, the observations y; follow a multivariate
Gaussian distribution with covariance matrix ¢2I and mean
vector Dx;. Therefore, we can employ a standard argument
based on the convexity of the Kullback-Leibler (KL) diver-
gence (see, e.g., [32]) to upper bound 7(Y;!|T(X)) as

1
I ITX) = 17 > Ex{D(fo, (YX)Il fo, (YIX)}, (53)

1,I'e[L]

where  D(fp,(YIX)||fp,(Y|X)) denotes the KL diver-
gence between the conditional probability density functions
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(given the coefficients X = (xi,...,Xy)) of the observa-
tions Y for the true dictionary being either D; or Dy . Since,
given the coefficients X, the observations y; are independent
multivariate Gaussian random vectors with mean Dx; and
common covariance matrix ¢2I,,, we can apply the formula
[53, eq. (3)] for the KL divergence to obtain

1
D(fo, (YIX)[1f, (VIX) = D" 51Dy = Diyxell’

ke[N]
= Z o3 Tr{(Dl—Dl/) (D —Dp)xixt ).
ke[N
(54
Inserting (54) into (53) and using (52) as well as
Tr{ATAZ,) < |2l IAl,
yields
1OV 1T (X)) < 220 = e (55)
completing the proof. O

For the proof of Theorem 3 we will need a variation of
Lemma 6, which is based on using the side information
T(X) = supp(X) instead of X itself.

Lemma 7: Consider a DL problem based on the generative
model (4) such that (7) holds with some r < 2./p. The random
sparse coefficients X are distributed according to (22) with
SNR < (1/(9v/80))m/(2s). We assume that the reference
dictionary Dg satisfies the RIP of order s with constant
oy < 1/2.

If im — 1)p > 50 then there exists a set Dy < D
of cardinality L = 2"=VP/5 guch that (32) and (33) are
satisfied, for the side information T(X) = supp(X), with

n = 12960NSNR?*m?¢ / p, (56)

and

e < r?/(320s). (57)

Proof: We use the same ensemble Dy (cf. (47)) as in
the proof of Lemma 6 (note that condition (57) implies (41)
since s > 1). Thus, we already verified in the proof of
Lemma 6 that Dy € X' (Do, r) and (32) is satisfied.

Upper bounding 1(Y; [|T(X)): We upper bound the condi-
tional MI I(Y;[|T(X)), conditioned on the side information
T(X) = supp(X), between the observation Y = (yl, cee, yN)
and the index [ of the true dictionary D = D; € Dy in (4).
Here, the random index [ is taken u.a.r. from the set [L]
and the conditioning is w.r.t. the random supports supp(X) =
(supp(xl), e supp(xN)) of the coefficient vectors X, being
i.i.d. realizations of the sparse vector x given by (22).

Let us introduce the shorthand Sy £ supp(x;). Note that,
conditioned on &g, the columns of the matrix Y, i.e., the
observed samples y; are independent multivariate Gaussian
random vectors with zero mean and covariance matrix

% =0,Ds D% + 0L (58)
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Thus, according to [31, eq. (18)], we can use the following
bound on the conditional MI

1(Y; [IT(X))

1
< ET(X){ z ﬁTr{[Ek_,ll — Ek"},][zk,l/ — Ek,l]}] (59)

ke[N]
LI'e[L]
with

Sk 207D s D] g +0°L (60)

Here, ET(X){ . } denotes expectation with respect to the
side information T(X) = (Sl, e, SN) which is distributed
uniformly over the N-fold product E x ... x & (cf. (14)).
Since any of the matrices X4 ; is made up of the common
component ¢2I and the individual component o-ale,Sk DZT Se
which has rank not larger than s, for any two [,1’ € [L], ‘the
difference Xy ; — Xy satisfies

rank {Zk,l — Zk,l’} < 2s. 61)

Therefore, using Tr{A} < rank{A}||A|l> and (61), we can
rewrite (59) as

1(Y; 1|T(X))

1 _ _
<2Ero| > L% - =l - Sl

ke[N]
1,I'e[L]
(62)

In what follows, we will first upper bound the spectral
norm H Zpr — Zkl H2 and subsequently, using a perturbation
result [54] for matrix inversion, upper bound the spectral norm
|| X 11 -X 11, H2 Inserting these two bounds into (62) will then
yield the final upper bound on 7 (Y; /|T(X)).

Due to the construction (47),
©0) - T T
Tt = T = 04 (DLs D5 — DDy s,)

@7
= 621 —¢ /apVe (D5 D3, s, — DO,SkDZTJ/jSk)

2.7 T T
+o,6 D150, 5 —DorsDrys)

(63)

with the shorthand X £ X + X7, In what follows, we need

Do,sll2 = v/3/2,
ID2,,sll2 < v/s/(4p), and

g2
12,112 = 1/o7,

A

(64)

for any / € [L] and any subset S C [p] with |S| < s. The first
bound in (64) follows from the assumed RIP (with constant
05 < 1/2) of the reference dictionary Dg. The second bound
in (64) is valid because the matrices D> ; have columns with
norm equal to 1/./4p (cf. (45)). For the verification of the last
bound in (64) we note that, according to (60), Amin(Z,1) > a2,
Therefore,

(63),(64)
12k — Zepllz =

V6e's/(4p)aiy/1— ¢ [(4p)
+202¢'s/(4p)

57)
< 4502/¢'s/(4p).

(65)
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Since the true dictionary D is assumed to satisfy the
RIP with constant J; < 1/2, the low SNR condition
SNR < m/(2s) implies via (18),

2

o 1
- < —. 66
o2 = 9m (66)
Since
1% et =)l = 120l Zer = 2o,
L 4.5(0u)0 5T
(66),(57)
= 172 (67)
we can invoke [54, Th. 2.3.4.] yielding
- - 12
” zk,zl - zk,11/H2 = 2“ zk,zl ”2” Ziel = gl Hz
©)
< 20|k — Zxil,- (68)

Inserting (65) and (68) into (62) yields the bound

aNso (/LY D | Zer — Zua
1,le[L]

1Y TX)) =

(65)
< 4-4.5Ns*(o./0)* /(4p)
&'=320¢ 2 4
6480Ns~(0,/0) ¢/ p
3;<1/2,(18) s 5
< 12960NSNR“m~¢/p, (69)
completing the proof. g

The next result relates the cardinality L of a subset
Do = {Dy,...,Dr} € D to the conditional MI I(Y;[|T(X))
between the observation Y = (yi,...,yn), with yj iid.
according to (4), and a random index [ selecting the true
dictionary D in (4) u.a.r. from Dy.

Lemma 8: Consider the DL problem (4) with minimax
risk * (cf. (8)), which is assumed to be upper bounded by a
positive number g, i.e., €* < ¢. Assume there exisits a finite set
Do ={D1,...,Dr} C D consisting of L distinct dictionaries
D; € R™*P such that

ID; — Dy |7 > 83 e (70)

Then, for any function T(X) of the true coefficients
X = (Xl,...,XN),

1(Y; I[IT(X)) > (1/2) logy(L) — 1. (71)

Proof: Our proof idea closely follows that of [33, Th. 1].

Consider a minimax estimator ﬁ(Y), whose worst case MSE
is equal to ¢*, i.e.,

sup Ey{ID(Y) — D|3} = &*, (72)
DeD
and, in turn since Dy C D,
sup Ey{|D(Y) - DI} <", (73)
Do

De

Based on the estimator ﬁ(Y), we define a detector [ (Y) for
the index of true underlying dictionary D; € Dy via

[(Y) £ argmin |[Dy — D(Y)||2. (74)
I'e[L]
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In case of ties, i.e., when there are multiple indices I’ such that
D, achieves the minimum in (74), we randomly select one
of the minimizing indices as the estimate [(Y). Let us now
assume that the index [ is selected u.a.r. from [L] and bound
the probability P, of a detection error, i.e., P, = P{f (Y) #1}.
Note that if

ID(Y) — Dyl < 26 (75)

then for any wrong index I’ € [L]\ {/},

ID(Y)-Dyllg = [ID(Y)-Dy+ D — Dy
> |D; = Dyllr — ID(Y) — Dyl
RV EGING
= V2
DY) - Dyl (76)

Thus, the condition (75) guarantees that the detector Il (Y)
in (74) delivers the correct indEx [. Therefore, in turn, a detec-
tion error can only occur if ||D — D1||}2; > 2¢ implying that

P. < P{ID(Y) - Dy} > 2¢}
@ 1 PR
< 5-Ex{ID(Y) - D[}
(73) ¢&*
< —
- 2¢
(77)

where (a) is due to the Markov inequality [55]. However,
according to Lemma 10 (see Appendix), we also have

I1(Y; [|T(X)) > log, (L) — P.logy (L) — 1, (78)
and, in turn, since P, < 1/2 by (77),
I1(Y; I T(X)) = (1/2)log, (L) — 1,
completing the proof. O

Finally, we simply have to put the pieces together to obtain
Theorem 1 and Theorem 3.

Proof of Theorem 1: According to Lemma 6,
if (m — 1)p > 50 and for any & < r2/320 (this condition is
implied by the first bound in (11)), then there exists a set
Dy € X (Do, r) of cardinality L = 20"~DP/5 satisfying (32)
and (33) with = 320N || 2y |l2e /0 2. Applying Lemma 8§ to
the set Dy yields,

320N 2428 /0 = 1(Y; [|T(X)) = (1/2)logy(L) = 1 (79)

implying
o2
€ > m((lﬂ) logy(L) — 1)
o2
= m((m - Dp/10—-1). (80)
Proof of Theorem 3: According to Lemma 7,

if (m — 1)p > 50 and for any ¢ < r2/(320s) (this
condition is implied by the first bound in (24)), then there
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exists a set Dy € X (Do, r) of cardinality L = 20"~D?/5 gatis-
fying (32) and (33) with 5 = 12960Nm2SNR2¢/ p. Applying
Lemma 8 to the set Dy yields,

12960Nm?>SNR?¢/p > I1(Y; [|T(X))
> (1/2)logy (L) — 1 31)
so that
SNR2p
> = — 2 ((1/2)log,(L) — 1
&> 12960Nm2(( /2)logy (L) — 1)
SNR2p
>—— " ((m—1)p/10—1). 82
> 12960Nmz((m )p/ ) (82)

Proof of Theorem 4: First note that an arbitrary dictionary
D e X(Dg =1, r) can be written as

D=I+A, with|Alr <r (83)

Any matrix D of the form (83) satisfies the RIP with con-
stant Jy such that

(1—r?<l—0 <1+ <+r? (84)

Moreover, since we assume the coefficient vectors Xy in (1) to
be discrete-valued x; € {—1, 0, 1}” and complying with (14),

Ex (Xt} = s/p. (85)

and

Ixcl3 = s. (86)

For (86), we used the fact that the non-zero entries of
x; all have the same magnitude equal to one. Combin-
ing (86) with (84), we obtain the following bound on
the SNR:

SNR = Ey{||Dx||3}/En{|n|3}

(1= 8)s/ma?)

(

824) (1 =r)%s/(mc?). (87)

In order to derive an upper bound on the MSE of the
DL scheme given by Algorithm 1, we first split the MSE of
ﬁ(Y) = (ﬁl ), ... ,ap(Y)) into a sum of the MSE for the
individual columns of the dictionary, i.e.,

Ey{ID(Y) — D|Z} = D Ey{lld,(Y) — di[}}.
lelp]

(88)

Thus, we may analyze the column-wise MSE Ey{||al(Y) —
d1||§} separately for each index / € [p]. Note that, by
construction

I1di(Y) — dg 13 < 2, (89)

since the columns of ﬁ(Y) and D have norm at most one.
We analyze the MSE of Algorithm 1 by conditioning on a
specific event C, defined as

C2 () Uil <04},
ke[N]
Ielp]

(90)
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Assuming r./s < 1/10, the occurrence of C implies the
estimated coefficient matrix X = (Xi,...,Xy) (cf. (26)) to

coincide with the true coefficients X = (xy, ..., Xy), i.e.,
P(X =X|C} = 1. 1)

Indeed, if /s < 1/10 and |nk | < 0.4 for every k € [N] and
I € [p], then y ; > 0.5 if x; ; = 1 (implying X ; = 1), and
yk,j < —0.51if x¢ ; = —1 (implying Xt ; = —1) as well as
|yk,jl < 0.5 if x¢; = O (implying £ ; = 0). Characterising
the probability of the event C is straightforward, since the
noise entries ny,; are assumed i.i.d. Gaussian variables with
zero mean and variance ¢2. In particular, the tail bound
[49, Proposition 7.5]) together with a union bound over all
entries of the coefficient matrix X = (xq,...,Xy) € R? xN
yields

P{C‘} < exp(—pN0.42/(26?)). (92)

As a next step we upper bound the MSE using the law of
total expectation:

Ev{ld;(Y) — d;[3} = Eyn{lldi(Y) — di[3|C}P(C)
+Ey n{lIdi(Y) — d1I3|CYP(C)
89 o~
C By (V) — d2[CIP(C) + 2P(C)
< Eyn{ldi(Y) — d/l13|C}
+2exp(—pN0.4%/(262)). (93)

The conditional MSE E{[[d;(Y) — d[[3|C} can then be
bounded by

Ey n{ldi(Y) - di[3[C)
= Ey.n{[Qd/(Y) - d/13[C}
 Eyn{jd - a3}

= EY,N{H% Z feaye — dil3(C}

ke[N]
@D Ey,xn{| % Z £ (DX + ) — dg13]C}
keCy
© Exn] % 2w Dxe +m) —dil3[c)  (94)
keC;

where steps (a) and (b) are valid because of d; € B(1) (cf. (7),
(6)) and P(xz,; = xx1|C) =1 (cf. (91)), respectively. Applying
the inequality [ly +z[l5 < 2(llyll3 + l|zll3) to (94) yields

Ey,n{lld;(Y) — di[13[C)

< 2EX,N{H% > xemel3lC)
ke[N]

+2Ex n{[d; — % > xxadiz[C). 95)

ke[N]

telp]
Our strategy will be to separately bound the two expectations
in (95) from above.
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In order to upper bound Ex N{|| #% > repny *k.mk I|c}, we
note that the conditional distribution f(n,|C) of nk,, given
the event C, is given by

2
ni

T1—04,041 () - € 207
V2762(Q(~0.4/0) — Q(0.4/5))
where Z{_0.4,04](-) is the indicator function for the inter-
val [-0.4,0.4] and Q(x) £ [ (1/+/27)exp(—(1/2)z%)dz
denotes the tail probability of the standard normal distribution.

In particular, the conditional variance anzk , can be bounded as

J (s |C) =

(96)

6’ <02/(Q(=0.4/c) — Q(0.4/5)).

Rt —

o7)

A
=V

Since, conditioned on C, the variables X;; and ng, are
independent, we obtain

p
Ex n{ H Ns kEZU:V] X, 1M H§|C}

2
p
_ (m) > Exn{x,|CExx{n?,|C)

ke[N]
te[m]

o ( p\
< (m) NEXJN{x,il|C}m02/v
2
P
= (M) NEx{x{ }ma?/v

2
(%) N(s/p)maz/v

)
=

®
&
N4

®7) 2
> (p/N)(1 =r)"/(vSNR), (98)

where step (a) is due to the fact that x,% ; 1s independent of
the event C.
As to the second expectation in (95), we first observe that

Ex,n{[d; — % Z XXk, del13|C)
ke[N]
1€[p]

= Ex{|d; - % z XXk, |3}

ke[N]
telp]

99)

since the coefficients x; ; are independent of the event C. Next,
we expand the squared norm und apply the relations

(s/p)?,
(s/p)*,

fork' =k, andt =1t #1

fork' £k, andt =1 =1
Ex {xk,ixk e xp 1 %00} =

(s/p), fork' =k, andt =1t =1
0 else.
(100)
A somewhat lengthy calculation reveals that
p p+p/s -2
EX{Hdz - — ZXk,z)Ck,zdzII%} = —
Ns N
ke[N]
telp]
<2p/N. (101)
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Inserting (101) into (99) yields

Ex,n{[d; — % Z xexedi3CY < 2p/N. (102)

ke[N]
tel[p]

Combining (102) and (98) with (95) and inserting into (93),
we finally obtain

~ 2 p (1—1’)2
Ey{lld;(Y) —dill3} < 2ﬁ[ VSNR +2]

+2exp(—pN0.4%/(262)), (103)

and in turn, by summing over all column indices / € [p]

(ct. (88)),
2 2
—~ p[(d—=r)
Ey{||D(Y) - D||3} <2 2
VB — D) < 28 St o]
+2pexp(—pN0.42/(26%)). (104)
The wupper bound (29) follows by noting that

V= 0Q(-04/5) — Q0.4/c) > 1/2 for ¢ < 0.4.

V. CONCLUSION

By adapting an established information-theoretic approach
to minimax estimation, we derived lower bounds on the
minimax risk of DL using certain random coefficient models
for representing the observations as linear combinations of
the columns of an underlying dictionary matrix. These lower
bounds on the optimum achievable performance, quantified
in terms of worst case MSE, seem to be the first results of
their kind for DL. Our first bound applies to a wide range
of coefficient distributions, and only requires the existence
of the covariance matrix of the coefficient vector. We then
specialized this bound to a sparse coefficient model with nor-
mally distributed non-zero coefficients. Exploiting the specific
structure induced by the sparse coefficient model, we derived
another lower bound which tends to be tighter in the low
SNR regime. Our bounds apply to the practically relevant
case of overcomplete dictionaries and noisy measurements.
An analysis of a simple DL scheme for the low SNR regime,
reveals that our lower bounds are tight, as they are attained by
the worst case MSE of a particular DL algorithm. Moreover,
for fixed SNR and vanishing sparsity rate, the necessary
scaling N = ©(p?) of the sample size N implied by our
lower bound matches the sufficient condition (upper bound)
on the sample size such that the learning methods proposed in
[8] and [27] are successful. Hence, in certain regimes, the DL
techniques suggested in [8] and [27] are essentially optimal in
terms of sample size requirements.

APPENDIX
TECHNICALITIES

The derivation of our main results makes use of Hoeffding’s
inequality, a powerful result in large deviation analysis, which
we state here for the readers convenience.

Lemma 9 [49, Th. 7.20]: Let x,, r € [k], be a sequence of
i.i.d. zero mean, bounded random variables, i.e., |x,| < a for
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some constant a. Then,

t2
P[ Zx, zt] §exp(—w).
relk]

The next result is a specialisation of Fano’s inequality of
information theory to our setting.

Lemma 10: Consider the DL problem based on observing
the data matrix Y = (yl, R yN) with columns being i.i.d.
realizations of the vector'y in (4). We stack the corresponding
realizations X of the coefficient vector X into the matrix
X = (X1,...,Xy). The true dictionary in (4) is obtained by
selecting u.a.r., and statistically independent of the random
coefficients Xy, an element of the set Dy = {D1,...,Dr}, i.e,
D = D; where the index | € [L] is drawn u.a.r. from [L]. Let
T(X) denote an arbitrary function of the coefficients. Then,
the error probability P{i(Y) % 1} of any detector f(Y) which
is based on observing Y is lower bounded as

(105)

I(Y; | TX)) + 1
logy(L)
Here, I(Y;!l|T(X)) denotes the conditional MI between

Y and [ given the side information T(X).
Proof: According to Fano’s inequality [46, p. 38],

PUI(Y)#1} > 1— (106)

A H(Y)—1
PUY) #1} = ————. (107)
log, (L)
Combining this with the identity [46, p. 21]
1(;Y)=H() — H(]Y), (108)

and the fact that H(/) = log,(L), since [ is distributed
uniformly over [L], yields

1Y)+ 1
logy(L)
By the chain rule of MI [46, Ch. 2]

PU(Y)#1) > 1— (109)

1(Y; 1) = I(Y, T(X); ) — I(I; TX)|Y)

= I(Y; l|IT(X)) + I1(; T(X)) —1(; TX)|Y)

—_—
=0

= 1(Y; [|T(X)) — I(I; TX)[Y). (110)
Here, we used I(l; T(X)) = 0, since the coefficients X
and the index [ are independent. Since I(/; T(X)|Y) > 0
[46, Ch. 2], we have from (110) that I(Y;[) < I(Y;[|T(X)).
Thus,

. (109),(110) I(Y;l|T(X 1
pli(y) 2oy (L IOGITO + 1 g
log, (L)
completing the proof. d
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